SEEPAGE PIT DESIGN

REDA AWAD
490 VANCE AVENUE
BLOCK 337 - LOT 14
TOWNSHIP OF WYCKOFF
BERGEN COUNTY, NEW JERSEY
FILE \#10877

June 15, 2020
Revised: November 24, 2020
January 29, 2021

AZZOLINA \& FEURY ENGINEERING, INC.
 CONSULTING ENGINEERS
 PARAMUS, NEW JERSEY

Perry E. Frenzel, P.E.
Professional Engineer
N. J. Lic. \#28190

REDA AWAD
Block 337 - Lot 14
490 Vance Avenue
Township of Wyckoff
Bergen County, New Jersey

Prepared by: CDD
Checked by: PEF
Date: June 15, 2020
Last revised: January 29, 2021
Job \#10877

SEEPAGE PIT SYSTEM DESIGN

Drainage Area: $8,852 \mathrm{ft}^{2}$ (Total Impervious Area) $\mathrm{C}=0.98$
Design Storm: 10 Year - 60 minute
2.0 in ./hr. Intensity
2.0 in. of Total Rainfall

Volume of Runoff: $\{2.0 \mathrm{in} . /(12 \mathrm{in} . / \mathrm{ft})\} \times 8,.852 \mathrm{ft}^{2} \times 0.98=\underline{\mathbf{1}, \mathbf{4 4 6} \mathbf{f t}^{3}}$

SEEPAGE PIT SYSTEM VOLUME

(2 Pits)
8 ft . Diameter, 3'-6" Deep
2.25’ Stone Around, 3.5’ Under
(See Plan for Detail)
Pit Volume: $2\left(\pi \mathrm{R}^{2} \mathrm{H}\right)=2\left\{\pi\left(3.67^{2}\right)\left(3.0^{\prime}\right)\right\}=\underline{\mathbf{2 5 4} \mathbf{f t}^{\mathbf{3}}}$
Stone Volume around Pit: $\left\{\left(\mathrm{V}_{\text {stone }}\right)\right.$ - $\left.\left(\mathrm{V}_{\text {2eepage }} \mathrm{Pit}\right)\right\} \times 40 \%$ Voids $\left\{(\mathrm{WxLxH})-\left(\pi \mathrm{R}^{2}{ }_{\text {outer }} \mathrm{H}\right)\right\} \times 40 \%$ Voids $\left\{\left(12.5^{\prime} \times 25.0^{\prime} \times 3.67 ’\right)-2\left(\pi(4.0)^{2}\left(3.67^{\prime}\right)\right\} \times 0.40=\underline{\mathbf{3 1 1} \mathbf{f t}^{3}}\right.$

Volume of Stone under Pit: $($ WxLxH $) \times 40 \%$ Voids $=\left(12.5^{\prime} \times 25.0^{\prime} \times 3.5^{\prime}\right) \times 0.40=\underline{\mathbf{4 3 8} \mathbf{f t}^{3}}$
$\underline{\text { Total Volume of Pit: }} \mathbf{2 5 4}+311+438=\underline{\mathbf{1 , 0 0 3} \mathbf{f t}^{\mathbf{3}}}$
(1 Pit)
8 ft . Diameter, 3'-6" Deep
2.0’ Stone Around, 3.5’ Under
(See Plan for Detail)
Pit Volume: $\left(\pi R^{2} H\right)=\left\{\pi\left(3.67^{2}\right)\left(3.0^{\prime}\right)\right\}=\underline{\mathbf{1 2 7} \mathbf{f t}^{3}}$
Stone Volume around Pit: $\left\{\left(\mathrm{V}_{\text {stone }}\right)\right.$ - $\left(\mathrm{V}_{\text {2eepage }}\right.$ Pit $\left.)\right\} \times 40 \%$ Voids

$$
\left\{(\mathrm{WxLxH})-\left(\pi \mathrm{R}^{2} \text { outerH}\right)\right\} \times 40 \% \text { Voids }
$$

$$
\left\{\left(12.0^{\prime} \times 12.0^{\prime} \times 3.67 ’\right)-\left(\pi(4.0)^{2}(3.67 ’)\right\} \times 0.40=\underline{\mathbf{1 4 3} \mathbf{f t}^{3}}\right.
$$

$\underline{\text { Total Volume of Pit: }} \mathbf{1 2 7}+143+202=\underline{\mathbf{4 7 2} \mathbf{f t}^{\mathbf{3}}}$

Total Volume of All Pits $=1,003+472=\underline{1,475 \mathrm{ft}^{3}}$
Storage Provided 1,475 $\mathrm{ft}^{\mathbf{3}}>\mathbf{1 , 4 4 6} \mathrm{ft}^{\mathbf{3}}$ Storage Required

This statement is to certify that the proposed stormwater management design shall result in a zero net increase in stormwater runoff from the developed site.

